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Abstract—An analysis of the unidirectional freezing of finite domain aqueous solutions during cooling at
subzero temperatures is presented. Under conditions where the solute is completely rejected by the
advancing ice front, the conventional diffusion equation is invalid and suitable transport expressions can
only be obtained by an appropriate variable transformation from the laboratory frame of reference where the
volume of the liquid region varies with time to a “solute-fixed” frame of reference where the volume of the
liquid region remains constant (Levin et al. [34]). Such an analysis results in a nonlinear parabolic partial
differential diffusion equation in the laboratory frame with a spatially and time varying effective convective
velocity term in addition to the usual time and spatial derivative terms. The analysis is valid at both short and
long times and also for both ideal, dilute and non-ideal, non-dilute solutions. Additional approximations are
made only to the extent that the liquid-solid interface is assumed to remain planar and that the system is
assumed to remain in thermal equilibrium during the freezing process. Generalized results are obtained for
initially ideal, dilute aqueous solutions cooled at various rates on one boundary by standard numerical
methods. These results indicate that non-uniform concentration profiles can exist within the liquid region of
systems during freezing and that the variation with time/temperature of the volumes of the liquid and solid
regions is significantly affected by the non-uniform distribution of solutes. Our results also indicate that
under certain circumstances (e.g. fast cooling rates) that the solidification process may be limited by mass
transfer considerations, that is, by the ability of the solutes to diffuse away from the interface, rather than
solely by the heat-transfer considerations of whether or not the sensible and latent heats can be removed.
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NOMENCLATURE Superscript
A, area; 5, solute-fixed frame of reference;
B, cooling/warming rate; Vv, volume-fixed frame of reference;
c, molar concentration ; A, non-dimensional.
D, diffusion coefficient ;
E, apparent activation energy; Subscript
k, thermal conductivity; EQ, equilibrium;
L, latent heat of fusion; EUT, eutectic;
l length; £ freezing;
R, gas constant; i, initial ;
. length; L, liquid ;
T, temperature ; LSI, liquid-solid interface;
t, time; m, melting;
v, volume; S, solid;
v, velocity ; s, solute or solute-fixed frame of reference;
0, apparent molar volume; w, water ;
X, mole fraction; v, position ;
. position. oc,  final
Greek symbols
7, activity coefficient; INTRODUCTION
n, viscosity ; THE SOLIDIFICATION and melting of common sub-
v, number of species per molecule; stances such as water and ice, the casting and zone-
o, density ; refining of metals, the production of frozen foods, and
o, volume fraction. the projected use of latent heat-of-fusion energy stor-

age devices are some typical examples of the multi-
tude of engineering situations involving heat and mass
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transfer in systems experiencing a phase transfor-
mation. The essential and common features of these

systems is that an interface exists which separates two
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regions possessing greatly different thermodynamic,
chemical and physical properties and that the position
of the interface is neither fixed in space nor is its motion
known a priori. Analyses of these phenomena therefore
usually involve the simultaneous solution of heat- and
mass-transfer equations subject to boundaries whose
positions vary with time. Accordingly, many references
to moving boundary problems exist in the literature
[1-5].

As has recently been pointed out by Sparrow et al.
[6], the standard model for freezing, and with approp-
riate changes of wording for thawing, envisions a liquid
which is initially at a uniform temperature equal to or
greater than its fusion temperature. Then, at a specified
instant of time, a cooling process is initiated at the
external surface of the system which causes freezing to
begin once the surface temperature is below the fusion
point. The freezing front then propagates into the
liquid with the liquid—solid interface at the fusion
temperature. The “sensible heat” of the solid and the
“latent heat” released by the freezing process are
transported through the frozen layer by conduction
and rejected to the environment. If the remaining
portion of the liquid is above the fusion temperature,
then the “sensible heat” of the liquid will also be
transported to the interface by conduction and thence
to the solid and the environment. Depending upon the
exact circumstances, heat and mass may also be
transported by convection within the liquid region.

If the liquid is a multicomponent solution rather
than a pure substance, then the above scenario must be
modified to include the effects associated with alter-
ations in the fusion temperature and the partitioning of
the solutes between the solid and the liquid regions.
For systems where the slopes of the solidus and
liquidus curves are negative, the presence of solutes
lowers the equilibrium freezing point of the solution
and the equilibrium distribution coefficient takes a value
of from zero, corresponding to the complete rejection of
the solutes by the solid phase, to one, corresponding to
the complete incorporation of the solutes into the solid
phase. If the equilibrium distribution coefficient is less
than unity, then some solute will be rejected by the
advancing liquid-solid interface causing further
lowering of the freezing point. The rejected, unin-
corporated solute will form a solute rich layer in the
liquid region immediately adjacent to the interface due
to its relative inability to diffuse into the interior
portions of the liquid region. This phenomenon is
termed “concentration polarization” and sometimes
gives rise to interface instabilities due to the “con-
stitutional supercooling” of the remaining portions of
the liquid region of the system (see Appendix).

* 1t should be noted that some investigators of multicom-
ponent solidification phenomena either consciously model
their finite systems as being semi-infinite in extent [ 24, 25] or
give the impression that they are modeling closed systems of
finite extent by defining a fixed reference volume [26].
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In multicomponent solutions, continued growth of
the solid phase will therefore depend not only upon the
ability to remove the latent heat of fusion and the
sensible heats of the liquid and solid regions, as is the
case for a pure substance when no solutes are present,
but also upon the ability of the solutes in the liquid
phase to diffuse away from the interface, thereby
permitting the solvent to gain access to the solid phase.
This is especially true for aqueous solutions where the
solutes are usually completely rejected by the ice and
where the ratio of the thermal diffusivity of the ice to
the thermal diffusivity of the remaining liquid is
approximately 10 and the ratio of the thermal diffu-
sivity to the mass diffusivity in the liquid is approx-
imately 100. Hence, under certain circumstances, the
solidification process for multicomponent solutions
may be rate-limited by mass-transfer considerations,
thatis, by the ability of the solutes to diffuse away from
the interface and for the solvent to diffuse towards the
interface, rather than solely by the heat-transfer con-
siderations of whether or not the latent and sensible
heats can be removed.

Because of this coupling of heat- and mass-transfer
considerations, it is necessary in solving such problems
to determine the spatial and time dependence of the
temperature and concentration fields and the manner
and rate at which the interface will move. It is therefore
not surprising to find that most investigators have
limited themselves to analyses of the freezing and
thawing of pure substances where it is only necessary
to solve for the temperature profiles and the interface
position and not for the solute concentration profiles.
Even so, only a few analytical solutions exist, with the
most notable being those of Neumann (see [7]) and
Stefan (see [8]) who considered the freezing and
melting of pure substances initially as the fusion
temperature. For other problems, however, either
numerical (for review, see [9]), or approximate analyti-
cal (for review, see [10]) methods have had to be
employed. Specifically, for the more complicated case
of the solidification of multicomponent solutions, a
number of different approaches have been taken; (1)
well-mixed liquid region approximation [11-19];(2)
constant interface velocity approximation [20--24];
and (3) fully coupled heat and mass-transfer analysis
[25-28].

However, despite these numerous studies, the only
general finite domain analyses which are valid over the
entire domain of time are those for pure substances
and well-mixed liquid region multicomponent so-
lutions [10, 14, 17, 30-32]. Investigators* of the
fully coupled solidification problem for multicom-
ponent systems have limited themselves to a discussion
of the transients occurring at relatively short times
where the long time effects of the finiteness of their
systems can be neglected [28].

The purpose of this study is therefore to present a
generalized analysis of the unidirectional freezing of
finite domain aqueous solutions under conditions
where the solute is completely rejected by the advanc-
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ing ice front. The analysis is valid at both short and
long times and also for both ideal, dilute and nonideal,
non-dilute solutions. Approximations are made only
to the extent that the system remains in the thermal
equilibrium with its environment during the freezing
process; and that the liquid-solid interface remains
planar in spite of the fact that the solution in front of
the advancing ice front might be “constitutionally
supercooled” (see Appendix). Generalized results are
obtained by standard numerical methods for initially,
dilute aqueous solutions of uniform composition being
cooled at various rates on one boundary while the
temperature of the other boundary is held constant.

FORMULATION

General thermodynamic considerations

Although most aqueous solutions common to in-
dustrial and biological processes are multicomponent
and electrolytic, the studies of Levin et al. [33-36]
have shown that at subzero temperatures, the behavior
of multicomponent electrolytic solutions mimic the
behavior of pseudobinary solutions consisting of a
single solvent, w {water), and a single solute, s.
Consequently, as a typical example, let us consider the
case of initially dilute electrolyte (NaCl, KCl, etc.) and
non-electrolyte (glycerol, ethylene glycol, etc.) so-
lutions which upon freezing form a pure ice solid from
which the solute is completely rejected. Unlike the case
for pure water, these types of solutions do not possess a
single unique equilibrium freezing (melting) tempera-
ture, Ty, but a loci of equilibrium freezing (melting)
temperatures which depend upon the instantaneous
composition of the solutions. Mathematically, this
concentration—temperature relationship is given by
the following expression [37]:

LTy —Ty)

1
5,RT2, 2

VCsEQ(Tf ) x>
where ¢,z is the solute concentration, v is the number
of species per dissociated solute molecule, L, is the
molar latent heat of fusion for pure water, T, is the
equilibrium freezing (melting) temperature of pure
water at 1 atm (273.15 K}, and §,, is the partial molar
volume of water. Using typical values of L, ~
6000 J/mol, 5,, = 18 cm*/mol and R = 8.314 J/mol K
[38], this expression for the “equilibrium”
concentration—temperature relationship can be re-
written as:

—(T,-T,,) mol/

. 2
1.86 v K @)

CSEQ(Tf) b

Focusing our attention upon the cooling of a finite
volume of solution having an initial uniform com-
position csi(csi < ¢gpr) and at an initial uniform
temperature T; above its equilibrium freezing tem-
perature T (c ), then the system will remain entirely
liquid until the temperature T, is reached. If we then
assume that ice nucleates, the freezing process will
begin and solute will be rejected by the advancing ice
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front. Now as long as the solid phase consists of pure
ice, the number of moles of solute N in the liquid
region of the system will remain constant for all time.
Consequently, under equilibrium conditions and at
temperatures T > T

N, = cs,VL = constant (3)
or, from equation (2),
VT _ ¢, _Tp=Ty
Vi lee ceelTy) T,—Tp @

where V(T)|gg is the “equilibrium™ liquid region
volume at the liquid-solid interface temperature 7',
and V; is the initial liquid volume of the system. The
“equilibrium” volume of the remaining liquid portion
of a finite domain system in which the solute is
completely rejected by the advancing liquid-solid
interface is thus inversely proportional to the equilib-
rium solution composition and/or the equilibrium
liquid-solid interface temperature. Continued lower-
ing of the temperature will result in the progressive
growth of the ice phase {V=(p,/p,) (V;—V,)} until
the eutectic temperature is reached at which time the
remaining liquid will begin to solidify at a uniform
composition, ¢,pur-

Transport expressions

The expression given above relating the total liquid
volume to the liquid region composition and/or
liquid-solid interface temperature (4) is valid only for
the equilibrium situation where the liquid region
composition is uniform, that is, in the absence of
concentration gradients. However, as was also men-
tioned above, nonuniform concentration profiles are
expected to exist within multicomponent systems dur-
ing solidification. Consequently, for multicomponent
solutions which change in volume during solidification
due to the removal of solvent but which remain fixed
with respect to the initial amount of solute

Ny=cV;= J{ cdr, t) dr = constant  (§)
44

where the solute concentration ¢, is now a function of
position and time. Mass and heat transport ex-
pressions are therefore needed to describe the
concentration—temperature-time behavior of such
systems. Now Levin ez al. [34, 35] have shown that the
conventional diffusion equation is invalid under these
conditions and that suitable transport expressions can
only be obtained by an appropriate variable transfor-
mation from the laboratory frame of reference where
the volume of the liquid region of the system varies
with time to the solute-fixed frame of reference where
the volume of the liquid region of the system remains
constant,

Consequently, let us define a modified scale of
length, y,, such that equal increments of y, contain
equal increments of unit basic volume of solute per
unit area:

dy, = ¢dy (6)
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where ¢,(y, t) is the volume fraction of solute in the
laboratory-fixed reference frame. In the solute-fixed
reference frame, the water and solute concentrations
must be expressed, respectively, as the amount of w and
s per unit basic volume of solute:

¢ = 5‘3, c = b é = constant 7)

¢S ¢S US

where ¢}, and ¢{ are, respectively, the solvent and solute
concentrations in the solute-fixed frame of reference,
¢, and ¢, are, respectively, the solvent and solute
concentrations in the laboratory-fixed frame of re-
ference, and 0,, and 7, are, respectively, the apparent
molar volumes of the solvent and the solute (assumed
constant). Since by definition

¢W = 6WCW’ ¢S = ESCS (8)

where ¢,, is the water fraction in the laboratory frame
and

ot o =1 ©)
from equations (7)-(9), it can be shown that
,dc, + vde, =0 (10)
o, = /g, ~ 1 (11)
and
1
det, = Edcw. (12)

The continuity equations in the solute-fixed frame
for the liquid region of the system therefore take the
form [34]

dc;
and
oc;,
o + Vv‘,\ J5 =0 (13b)

where J3, is the molar flux of solvent in the solute-fixed
frame. Now Crank [9] has shown that
i
va = *Jw
P
where J, is the flux of solvent in the laboratory fixed
frame

(14)

(15)

and D”(c,, T) is the effective diffusivity in the labo-
ratory fixed frame [9, 34]

D"=(1 +———alnys>ﬁﬁ

élnx,/ n
such that the term (1 + Jdln /0 In x) - (./1)
represents the effects of solution non-ideality and
viscosity and the term D, (T) represents the effect of
temperature on the overall diffusivity

D,(T) (16)
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D,(T) = D\,

E /1 1
mexp[—— §<?— }—‘>:| (17)

sw

where T, is the initial equilibrium freezing (melting)
temperature T, and DV is the value of the volumetric
diffusivity for an ideal, dilute solution at temperature
T e

Consequently on the basis of the above relation-
ships, equations (6), (12), (14) and (15), the continuity
equation for the solvent, equation (13b), can be re-
written as

1 dc, @& ( DVacw)
ey -—")=0
P ot Pavy ¢, Oy,

or, employing equations (7)—(9), as

(18)

de; 6( V@cs> de,
o O pr&e) oy, 19
a o\ )T (19)
where
DY éc
LoDl 2
vy v, (20)

is the effective convective velocity in the laboratory
frame and 0 < y < I(t) such that

ty=1+ f v g dt

v 0

2y

is the size of the system at any time ¢, /; is the initial size
of the system and v, is the effective convective
velocity at the liquid-solid interface, y = I(t), or more
appropriately, the thermodynamically induced solvent
volume flux out of the liquid region and into the solid
region.

The initial and boundary conditions corresponding
to this situation are

(DAt =0, ¢,=¢ for0 <y <] (22)
(2) Fort > 0,
de,
(@ —=0 aty=0 (23a)
dy
(b) ¢y = cypolT ) at y=I(t) (23b)

where c¢,zo(T1si) is the “equilibrium” solute con-
centration at the liquid-solid interface temperature,
T .51 [see (2) and (27)].

Turning our attention now to the analogous heat
transfer problem, for aqueous solutions the ratio of the
thermal diffusivity of pure ice (1.26 x 10~2 cm?/s) to
the thermal diffusivity of water (1.33 x 10~ 2 cm?/s) is
approximately 10 (HCP, 1978). Furthermore, the ratio
of the thermal diffusivity of water to the mass diffusivity
of low molecular weight solutes in water (~1 x 1073
cm?/s at 0°C) is approximately 100. For compu-
tational ease we will therefore limit ourselves to
situations where our system can be assumed to
remain in thermal equilibrium with its environment.
Consequently, the temperature profiles within the
liquid and solid regions are of the form
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Ty, =Ty + (Tsi—To) /) for0<y<l! (24a)
Ts= Trsa+(Te—Tys) (y=D/v

forl<y<li+s (24b)
where
#At) = l(l — (2)) (25)
Ps
is the thickness of the solid region
T, = T; = constant (26a)

is the system temperature at the boundary y = 0
Te=T;+ Bt (26b)

is the system temperature at the boundary y = i+ v,
Bis the cooling/warming rate at the boundary y = | +
#, and

kg k.
Y T+ T Ty — puLyvs,
TLSI = k . kL (27)
st
¥ !

is the system temperature at the liquid-solid interface
such that ks and k, are, respectively, the thermal
conductivities of the solid and liquid regions. This last
expression for T g; is based upon the fact that at the
liquid—solid interface, the heat flux within the solid is
equal to the heat flux within the liquid plus the amount
of heat liberated as a result of the phase change

occurring at the interface
oT oT
—kg—2 — k== = puLwvis (28)
oy Iust 0y lisr
Although the above relationships, equations

(19)-(27), form a complete set of mathematical ex-
pressions, solution of this problem is facilitated by
transforming these expressions from the laboratory-
fixed frame of reference, where a boundary condition
at a moving interface must be specified, equation (23b),
back to the solute-fixed frame of reference where the
position of the liquid-solid interface remains sta-
tionary [34, 35]. Using equations (8)—(12), it can be
shown that the analogous mass-transfer equation in
the solute-fixed frame of reference takes the form

s C‘) 08
e _ ( Dt “”) (29)
ot Ay, \ 0y,
where
0 <y, <[ = ¢l = constant (30)

and D’ is the effective diffusivity in the solute-fixed of
reference

D* = ¢} DV,

The initial and boundary conditions in the solute-fixed
frame of reference are:

(31)

(1) 1=0,¢=cy forall|y,| <1, (32)
acs,

(2) t >0, =0 aty,=0 (33a)
Cys
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¢y = Cupg(TLsr) aty =1, (33b)
where
1 1.86v K
Cweg = ( 5(T,, — T) mol/l 1) (34)

Non-dimensionalization
These equations can be non-dimensionalized in
following manner. If we define

Vs = ydls,

then since [, = d)xll,»,

y =yl (35

% 45,

Furthermore if we define a non-dimensional time 7 and
a nondimensional temperature T such that

45, = (36)

~ D}
f==2 7 "t —t,) (37)
and
F=TTn (38)
T,—T,

then the governing mass-transfer equation, equation
(29), takes the form

o _ ( i D, gy, )

(39)
at ay ] ¢.|I 3}’ s

for
0<y <1

where from equations (17) and (38), Dr is the tempera-
ture dependent portion of the mass diffusivity

Dy = exp ( E ) T (40)
RT T+ -2
such that E(T) represents the apparent activation
energy for the diffusion process and the effects of
solution non-ideality and viscosity on the overall
diffusion process have been neglected. The initial and
boundary conditions take the form

(1) <0 and T>0, (41)
o5, = ¢3, for 0<j,<1
) 120 and T<0, (42a)
(a) at y, = O (centerline),
Wl _,
ays 0
(b) at y, = 1 (liquid-solid interface),
Tf..
¢ =(1+¢3) ———) -1 (42b)
st T, -T.
where
. T.-T,
Ty ==>— 43)
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is the non-dimensional equilibrium freezing—melting
temperature of pure water. The temperature of the
system is given by

Tr=To+ (Trsr - TO)(%) for0<i<l  (442)
R R . N =1
Ts=Tist + (Te — Trsi) (ﬁ‘/
fori<y<i+ v (44b)
where
To=1, Te=B (45)
and
k“ kl. pr N
. 78 Te + T,T07 T -7 )D ULst 6)
LSI — I\S kL
g T
such that
PO B
B=_———r {47)
DT, —T,)
is the non-dimensional cooling/warming rate and
t, = —li/b, (48)
m = B .

Finally, the time/temperature variation in the volumes
of the liquid and solid regions are given by

I=V,=VVy »=Vi=(p,/pg)-(1=V))
or {

(49)

i
V" = 1 + [ lELSI dt (50)

i)

where the non-dimensional interface velocity is given

by
¢s>2 g%,
Con(B) 2]
¢\‘ T ‘¢.‘i (?yS N

The governing non-dimensional parameter for the
present situation is the rate B which represents the
ratio* of the externally induced volumetric time rate of
change in the equilibrium solute concentration

5 vpsil;
LsI = 0,
2

(51)

* From equanons (46), (26b) (4) and (43),
dT’dt .
(T,=T,) N
CDpe,

Al; 5 (Al)—
( )(T T)

A(D' /1)

o)

— (Al de
:JAI.)T,“ /4t o)
APy ey,

Furthermore, since for most aqueous solutions the diffusion
coefficient is of the order of 1 x 1073 cm?/sat T; = 20°C, on
the basis of equations (17) and (53) D%, ~0.5 x 107 % cm?/s at
T, = —1°C. Hence,

B = IB(1 x 10*)/cm?“C/s.
Consequently,if B = —1,then B = —107%"

Crsforl, =1cm.
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(ADBAT; — T,,) = (AI)T dc_/dt} to the rate of
diffusion of the solute w1thm the liquid region
{ADL/)e ). If|Bl « 1, no nonuniform concentration
profiles should develop within the liquid region of the
system during the freezing process. In this limit there is
little, if any, solute polarization because the solute can
diffuse away from the advancing ice front almost as fast
as the water which is freezing can convectively deposit
it at the liquid-solid interface. Consequently, the
solidification process will not be rate limited by mass-
transfer considerations. On the other hand, if |I§| » 1,
highly nonuniform concentration profiles should de-
velop within the liquid region of the system during the
freezing process. In this limit, a significant amount of
solute polarization should occur because the ice front
is attempting to propagate faster than the “filtered”
solute can diffuse away from the interface and than the
water to be frozen can diffuse towards the interface.
The solidification process in this instance will be rate-
limited by mass-transfer considerations.

METHODS

Model applicability

The model presented is generally applicable to any
aqueous solution satisfying the conditions stated.
However, in order to solve our set of equations, (39),
(41)-(43), some assumptions need to be made regard-
ing the initial composition of the solution, the physical
properties of the solute and the solvent, and the
temperature range over which the freezing process is
occurring. Consequently, as a demonstration of the
applicability of the model, we considered the case of an
hypothetical ideal aqueous solution having an initial
solute concentration of 0.278 mol/! cooled to —20°C
at various rates. To account for the variation with
temperature of the apparent activation energy of the
mass diffusivity, equation (40), we have employed the
following expression :

145x 1072 T
E = 4.186exp [mz +5.69]

This expression results from a “least square fit”
analysis over the temperature range of 0 to —40°C of
the available data for the self-diffusion of pure water
[39]. The apparent activation energy governing the
diffusion process therefore increases during the cooling
process (E_, ¢~ 24kJ/molK vis a vis E_y¢c ~
32 kJ/mol K). These and other parameters are sum-
marized in Table 1.

Solution technique

Although the set of mass and heat-transfer ex-
pressions presented above to describe the redistri-
bution of solute within an aqueous solution of finite
extent during freezing can be written in the solute-
fixed reference frame to avoid the complications
imposed by analyzing a boundary condition at the
moving liquid-solid interface, equation (23b), the
strong concentration and temperature dependence of
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Table 1. Physical parameters

Initial concentration ¢

Solute apparent molar volume 7,

Chemical species per solute v
molecule

Initial volume fraction N

s
w;

Water apparent molar volume By

Ice/water density ratio pe/p

Liquid region thermal k,
conductivity

Solid/liquid thermal ketk;
conductivity ratio

Latent heat of fusion L,

Initial temperature T;

Equilibrium freezing/ T
melting temperature
of pure water

Equilibrium freezing/ T
melting temperature

Mass diffusivity at T, D,

Mass diffusivity activation energy E

0.278 mol/l
360 cm?/mol
20

0.01

99.0

18.0 cm?/mol
0917
5.6mW/icmK

4.0

6.0 kJ/mol
293.15K (20°C)
273.15K (0°C)

211K (—1°C)

0.5x 10" %cm?/s

145x1072T
arssexp — 40T 569 kymot

the mass diffusivity in the solute-fixed frame, equations
(31) and (40) necessitates that the transport ex-
pressions, equations (39), (41)-(42), (44)—(46), be sol-
ved numerically. Consequently, an implicit method of
differences using the Thomas tridiagonalization meth-
od [40] was employed to solve the governing non-
linear parabolic partial differential transport equation.
Typically, 21 nodal points of unequal spacing (8 x 0.1
+8 x 0.02+4 x 0.01) with the finest mesh located closest
to the liquid—solid interface and the coarsest mesh
located near the centerline together with a time step
which was small enough to yield values for the stability
parameter AZ/(AJmin)* of between 1 and 10 was used.
Doubling of the number of mesh points and/or a
decrease in the size of the time step by an order of
magnitude yielded results which were not statistically
different from those obtained under normal con-
ditions. The principle usually adopted for non-linear
parabolic equations of using a single time step
predictor—corrector iterative scheme to evaluate un-
known parameters was also employed in the present
study. The error tolerance was typically 1 x 1074
Finally, on the basis of equation (5) which describes the
conservation of solutes within the liquid region of the
system, we estimate the “error” of the numerical
solution to be less than +0.1%,.

RESULTS AND DISCUSSION

For the case B = —S5, the spatial variation at
various times during the freezing process of the

HMTY 24:5 ~ B

temperature in the liquid and the solid regions and of
the solute volume fraction in the liquid region are
shown in Fig. 1. The variation with time of the
temperature at the boundary y = [+ (T,), at the
llqu1d—sohd interface y = I(T,_s,) and at the boundary
= 0 (T,), and of the solute volume fraction at the
liquid-solid interface y = IA(¢S )and at the boundary ¥
= 0(¢,,) are shown in Fig. 2. As can be seen, the solute
volume fraction at the boundary y = 0, ¢,, lags
behind the solute volume fraction at the liquid-solute
interface, ¢, s1s? , due to the polarization phenomenon.
Initially, the solute volume fraction at the liquid-solid
interface will increase with time (see Fig. 2) as a result
of the fact that the interface temperature initially
decreases with time and of the assumption of local
thermochemical equilibrium at the interface. The
solute volume fraction at the boundary y = 0,
however, initially does not change as ice first forms at
9 =1 because all of the water initially being frozen is
coming from the region of the system near the liquid-
solid interface. Only after a finite period of time (for the
case B= —35,t 2 002and Ty < —0.2) will the effects
of the solidification process begin to manifest them-
selves at the inner regions of the system due to the
diffusion of solute (water) away from {towards) the
liquid—solid interface. At long times though, the
solute volume fraction in the interior portions of the
liquid region will approach the solute volume fraction
of the liquid-solid interface due to the fact that at
temperatures between T (or T,) and Tgyy, the
“equilibrium” state of an aqueous solution of finite
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Fic.. 1. The spatial variation of the temperature (a) and the solute volume fraction (b} for a cooling rate of
B = —5 at various times.

extent is a partially frozen system with the remaining
liquid having a uniform equilibrium concentration
corresponding to the interface temperature (see Fig. 2).
One additional point should be noted about the spatial
and time dependence of the temperature and solute
volume fraction profiles of the system. Namely, that at
any given spatial position, the temperature and solute
volume fraction might undershoot [see Fig. 2(a}] or
overshoot [see Fig. 2(b)] their final equilibrium values.
This is a direct result of the fact that non-uniform
concentration profiles exist within the liquid region of
the system for cooling rates | B| > 1 and that the spatial
and time dependence of the temperature of the system
is directly related to the magnitude of the latent heat
released by the solidification process at the
liquid-solid interface which in turn is a function of the
solute concentration and the solute concentration
gradient at the interface.

Now a better indicator of the magnitude of the
solute polarization that occurs within systems of finite
extent during freezing is the ratio of the solute
concentration at the liquid—solid mterface, , to the
solute concentration at the boundary j = 0 c . This
ratio is plotted as a function of time, — B, for several
different non-dimensional cooling rates Bin Fig. 3. As
can be seen, in general, the ratio ¢__/c,, first increases
with time from its initial value of umty before decreas-
ing back towards unity. The initial increase in the

ratio ¢, /c is due to the fact the the liquid-solid
interface solute concentration ¢, increases with de-
creasing temperature because of ‘the assumption of
local thermodynamic equilibrium and constant cool-
ing rate while the solute concentration ¢, at y = 0
initially is not affected by the freezing process and
remains essentially equal to its initial value ¢y As time
progresses, however, and the rejected solute is able to
diffuse away from the liquid-solid interface and into
the interior portions of the liquid region, the j = 0
solute concentration ¢,, begins to rise, causing the ratio
¢,,./Cso to decrease with time. Finally, as equilibrium is
ac ieved as f — oo, the ratio c, /c,,, approaches an
equilibrium value of unity. In addi tion to varying with
time/temperature during freezing, the magnitude of
the ratio ¢, /cso is also a strong function of the cooling
rate B. For example, when B = —0.1, the maximum
value of the ratio ¢ /e, is only 1.1 (at Bt = —0.03)

‘hile when B = — 10.0, the maximum value of the
ratioe, /e, is 5.6 (at Bt = —0.52). The reason for this
strong dependence of the magnitude of the ratio
¢, /s, on the cooling rate is that when |B| « 1 almost
no solute polarization occurs because the rejected
solute can diffuse away from the advancing ice front
almost as fast as the water which is freezing can
convectively deposit it at the liquid-solid interface.
However, when [E| > 1, a significant amount of solute
polarization occurs because the “filtered” solute can-
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not initially diffuse away from the interface as fast as
the ice front is attempting to propagate.

The effect that the solute polarization phenomenon
has on the overall freezing process can be seen more
easily in Fig. 4 where the relative volume of the liquid
region of the system ¥, at a given time, — Bi, is plotted
for several different non-dimensional cooling rates B.
Since essentially no nonuniform concentration profiles
develop for |l§| « 1, the liquid region volumes for
systems of finite extent will essentially be equal to
(actually, slightly greater than) the “equilibrium”
liquid volume of the system at any temperature T g;.
On the other hand, for |l§| » 1 highly non-uniform
concentration profiles develop within the liquid region
of a system [see Fig. 1(b)] such that the solute
concentration at the liquid-solid interface greatly
exceeds the solute concentration within the interior
portions of the system (see Fig. 3). More unfrozen
water as compared to the equilibrium case will there-
fore be present at any temperature below the initial
freezing point for fast cooling rates. Furthermore, since
the extent of solute polarization increases with faster
cooling rates, the amount of unfrozen water (ice)
present at any temperature will increase (decrease) as
the cooling rate is increased. However, as the freezing
process continues and the solute rejected by the
advancing ice front has time to diffuse into the interior
portions of the liquid region which is continually
diminishing in volume, the volume of the liquid region
will approach its final equilibrium value as t - oo for
any fixed final temperature T .51 between 0 and T zyr.

Finally, the variation with time, — B, of the rate of
growth of ice can be seen in Fig. 5 where the non-
dimensional interface velocity o5, is plotted for several

profile. different non-dimensional cooling rates B. Several
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FiG. 3. The variation with time of the ratio of the solute concentration at the liquid—solid interface, j = [, to
the solute concentration at j = 0 for various cooling rates.
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facts should be noted about the time dependence of
the liquid-solid interface velocity. First, in general, the
faster the cooling rate, the larger will be the interface
speed at any given time. This should be expected since
less time is available between any two temperatures at
the faster cooling rates for finite domain systems to
attempt to re-establish thermochemical equilibrium.
Secondly, because the system is beginning to freeze at
its initial equilibrium freezing temperature T, {or T}
rather than supercooling, the initial ice growth rate at
t=0 is zero rather than infinite. Likewise, as time
progresses the interface accelerates, causing the ice
growth rate to increase, rather than decelerate as it
would for the case of a sudden change in surface
temperature. The continuing buildup of rejected sol-
ute in the liquid region of the system adjacent to the
interface and the relative inability of “fresh” water to
diffuse towards the interface and freeze, however,
eventually causes the ice front to decelerate resulting in
some maximum value for the speed of the liquid-solid
interface. Eventually, the speed of the liquid—solid
interface will asymptotically approach zero as equilib-
rium is achieved within the finite domain system as
t= 7.

SUMMARY AND CONCLUSION

A non-ideal, non-dilute pseudo-binary solution mod-
el has been presented to describe the concentration
polarization of solutes during the planar uni-
directional freezing of finite domain aqueous solutions
at both short and long times. Qur results indicate that
the diffusion of solutes within the liquid region of
systems of finite extent where the solid phase consists
of pure ice is not governed by the “ordinary” diffusion
equation. Thisis a direct result of the facts that the sizes
of the solid and the liquid regions vary with
time-temperature and that the total volume of solute
within the remaining liquid remains constant. Genera-
lized results are obtained by standard numerical
techniques for initially ideal, dilute aqueous solutions
cooled at various rates on one boundary. These results
indicate that non-uniform concentration profiles can
exist within the liquid region of systems during freezing
and that the volumes of the liquid and solid regions at
any time/temperature are significantly affected by the
extent of solute polarization. More specifically, our
results indicate that for “fast” cooling rates, the
solidification process may be rate-limited by mass-
transfer considerations, that is, by the ability of the
solutes to diffuse away from the interface, rather than
solely by the heat-transfer considerations of whether
or not the latent and sensible heats can be removed.
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APPENDIX

Throughout our current discussion of the solidification of
aqueous solutions, one of our major assumptions has been
that the moving liquid-solid interface remains planar during
the entire freezing process. Unfortunately, stability of a
moving planar ice front cannot always be guaranteed [41]. It
is therefore appropriate for us to briefly discuss the region of
validity of our current analysis of aqueous solution freezing.

Now the stability of our planar liquid-solid interface can
easily be determined by applying the Chalmers stability
criterion [22], which for our purposes reduces to the
following expression

oT dc, T
SC =L =1

Ay list 8y Oy lpg

This expression states that if the magnitude of the tempera-
ture gradient within the liquid region at the liquid—solid
interface is greater than the magnitude of the gradient in the
“equilibrium freezing” temperature at the interface, then a
propagating planar ice front will be stable. If this condition is
violated, then higher order dendritic configurations are more
stable than a simple planar surface. Application of this
criterion to our current analysis of the freezing of finite
domain aqueous solutions (see Fig. 6) yields the results that
the assumed planar interface will be stable if EB[ < 6.5 but
might be unstable at some times — Bt > 0if |B| > 6.5. Our
present analysis should therefore be valid for non-
dimensional cooling rates, | B, less than approximately five.

stable

(54)

unstable

LE GEL DES SOLUTIONS AQUEUSES EN VOLUME FINI: REDISTRIBUTION
DU SOLUTE

Résumé—On présente 'analyse du gel unidirectionel des solutions aqueuses de volume fini pendant le
refroidissement 4 des températures basses. Dans ces conditions, alors que le soluté est complétement rejeté
par le front de glace qui avance, Pequation classique de la diffusion n’est pas valable et des expressions
convenables du transport peuvent étre obtenues seulement par une transformation de variable appropriée
entre le systéme de référence ot le volume de liquide varie en fonction du temps et le systéme de référence 4
‘soluté fixe’ ot le volume de liquide reste constant (Levin et al., J. Heat Transfer 99, 322, 1977). Cette analyse
conduit a une équation de diffusion aux dérivées partielles parabolique et non linéaire avec un terme de
vitesse de convection variant dans I'espace et dans le temps, en plus des termes usuels de dérivation par
rapport au temps et 4 Pespace. L’analyse est valable 4 la fois pour les temps courts et longs et aussi bien pour
les solutions idéales, diluées et non idéales ou concentrées. Les résultats montrent que des profils de
concentration non uniforme peuvent exister dans la phase liquide pendant le gel et que la variation en
fonction du temps et de la température du volume des régions liquide et solide est sensiblement affectée par la
distribution non uniforme du soluté. Les résultats indiquent aussi que dans certaines circonstances (comme
les grandes vitesses de refroidissement), le mécanisme de solidification peut étre limité par le transfert
massique, c’est-a-dire par la possibilité pour le soluté de diffuser loin de I'interface, plut6t que par le transfert
de chaleur associé au déplacement de chaleur sensible ou latente.
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DAS GEFRIEREN VON WASSRIGEN LOSUNGEN IN BEGRENZTEN
BEREICHEN: UMVERTEILUNG DES GELOSTEN STOFFES

Zusammenfassung—Es wurde eine Untersuchung des eindimensionalen Gefriervorgangs von wiBrigen
Losungen in begrenzten Bereichen mit Wirmeentzug bei Temperaturen unterhalb des Gefrierpunkts
durchgefiihrt. Unter Bedingungen, bei denen der geloste Stoff von der vordringenden Eisfront vollstandig
verdringt wird, ist die herkdmmliche Diffusionsgleichung ungiiltig. Passende Transportbeziehungen kénnen
nur durch eine Variablentransformation vom Laborbezugssystem, bei dem sich das Volumen des
Flissigkeitsgebiets mit der Zeit verdndert, auf ein in Bezug auf den gelosten Stoff fixiertes Bezugssystem, bei
dem das Volumen des fliissigen Gebiets konstant bleibt, erhalten werden. Dieses Vorgehen fiihrt auf eine
nichtlineare parabolische partielle Diffusionsdifferentialgleichung fiir das Laborsystem mit einem rdumlich
und zeitlich verdnderlichen effektiven Konvektionsgeschwindigkeitsglied zusdtzlich zu den iiblichen
Ableitungen nach den Orts- und Zeitkoordinaten. Die Beziehungen sind fiir ideale, verdiinnte und
nichtideale nichtverdiinnte Losungen fiir kurze und lange Zeiten giiltig. Zusitzliche Vereinfachungen
werden nur insofern eingefiihrt, als die Fest/Fliissig-Grenzflache als eben und die Temperatur des gesamten
Systems wihrend des Gefriervorgangs als ortlich gleichformig betrachtet wird. Allgemeingiiltige Ergebnisse
wurden fiir anfinglich ideal verdiinnte wiBrige Losungen bei verschiedenen Abkiihlungsgeschwindigkeiten
mit numerischen Standardmethoden berechnet. Diese Ergebnisse zeigen, daB ungleichférmige Konzentra-
tionsverldufe im Fliissigkeitsgebiet von Systemen wihrend des Erstarrens auftreten konnen und daB die
Veridnderung der Volumina des fliissigen und des festen Bereichs signifikant mit Temperatur und Zeit von
der ungleichformigen Verteilung des gelGsten Stoffes beeinfluBt wird.

Unsere Ergebnisse weisen ebenfalls daraufhin, daB unter bestimmten Umstdnden (insbesondere bei hohen
Abkiihlungsgeschwindigkeiten) der Erstarrungsvorgang durch den Stofftransport begrenzt werden kann,
d.h. mehr durch die Moglichkeit des gelosten Stoffes, von der Grenzflache wegzudiffundieren, als allein durch
die Mdglichkeiten des Wirmetransports, d.h. ob die fiihlbare und latente Wirme abgefiihrt werden kann

oder nicht.

3AMEP3AHUE BOJIHBIX PACTBOPOB KOHEYHOI'O OBBEMA. NEPEPACIPEJEJEHUE
PACTBOPEHHOI'O BEHIECTBA

Annorauma — [lpeacrasned aHaaus npolecca 3aMep3aHHs BOIHBLIX PacTBOPOB KOHEYHOro obGbema
NpH OXJIAXACHAH pacTBOPa 10 TEMMNEPATypbl HHXE HyjA. [1pH MOTHOM OTTOPXEHHH PACTBOPEHHOTO
BEILECTBA NPOABHIAIOIIMMCH (PPOHTOM J1bJa HE/b3S MCMONL30BATL OOBIYHO NMPUMEHSEMOE YpaBHEHHE
auddysun. CooTBeTCTBYIOILME YPABHEHHA NEPEHOCA MOXHO BBIBECTH TOJLKO NyTeM Npeobpa3zoBaHus
nepeMEHHbIX M3 1a0OpaTOPHOH CHCTEMBI OTCYETa, B KOTOPOH NPOMCXOOHUT M3IMGHEHHE BO BPEMEHH
obbeMa XMIkOH (a3bl, K CHCTeMe OTCYeTa, QUKCHPOBAHHOH B PacTBOPEHHOM BELIECTBE, B KOTOPO#
06beM ¢ XKHAKON Da30i OCTaeTCa BETHYHHOM NOCTOARHOM (cM. JleBHH u Ap., xypHan «Tennonepenaua»
T. 99, c1p. 322, 1977 r.). Takoe npeobpa3oBaHHE NO3BONAET NONYHHThL HelMHeHHoe napabonnueckoe
ypaBHEHHE AU(QQDY3IHH B HaCTHBIX NPOH3BOAHBIX B 1abOpPaTOpHONM CHCTeMe OTcueTa, KYAa, NOMHMO
OOLIYHBIX NPOCTPaHCTBEHHO-BPEMEHHBIX TPOM3BOAHbBIX, BXOAMT wieH C 3bDdeKTHBHON KOHBEKTHBHOM
CKOPOCTBIO, H3MEHSAIOIIEACA B NPOCTPAHCTBE H BPEMEHH. AHANU3 CNpaBe/UIHB KaK A Manbix, Tak U
6onb1UMX BPEMEH, a TAKXKeE UM MAEANbHBIX, pa3GaBIeHHBIX, H HEHIea bHbIX, HEPa30ABAEHHBIX, PACTBO-
poB. JlONO/HATEbHBIE YNPOILICHHS CBA3AHbI C NPEANOJOKEHAAMH, YTO IPAHULA Pa3neNa >KMIKOCTb-
TBEPAOE TENO OCTAETCs MNJIOCKOH, a TeMnepaTypa Bceil CHCTEMbl — OJHOPOAHOW B MPOCTPAHCTBE Ha
MPOTAXEHUH BCETO NpoLiecca 3aMep3aHus. OOBMHBIMH YHCIEHHBIME METOJAMH NIOJIyHEHbI Pe3YILTATHI
[U1e MEpPBOHAYANILHO HMACANBLHBIX, pa3baBlCHHBIX BOMHBIX DPACTBOPOB, OX/IAXAAEMBIX C DPa3IHYHON
CKOPOCTb10. DTH Pe3y/IbTaThl MOKA3LIBAIOT, HTO NPH 3aMEP3aHHH B 06beMe KHIKOM (a3bl MOTYT HMETD
MECTO HEOIHOPO/HbIE NPOGHIH KOHUEHTPALUHH H YTO HEOAHOPOIHOE PACHpPEle/IcHHE PACTBOPEHHOTO
BELIECTBA OKa3biBacT 6ONbllloe BIMSHHE HA 3aBHCHMOCTB TEMMEpAaTyphl OT BPEMEHH M 0OBEMOB
KHIKOCTH M TBepaoro BemlecTsa. Kpome TOro nokasaHo, 4TO npH ONpee/ieHHBIX YCIOBHAX (T. €.
BLICOKON CKOPOCTH 3aMEP3aHHA) NPOLECC 3aTBEPACBAHNA MOXET 3aTOPMAKHBATLCA MACCONEPEHOCOM,
TO eCTh IH(QY3HElH PACTBOPEHHOTO BELIECTBA OT [PAHMLBI pa3zena Golee. YEM YHCTO TENNTO00OMEHHBIMH
npoleccaMM TaKHMH, KaX UIMEHEHHE TENJI0COAEPKAHUA HIIH BbIAC/TCHHE CKPLITON TENIOTHI.
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