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Abstract-An analysis of the unidirectional freezing of finite domain aqueous solutions during cooling at 
subzero temperatures is presented. Under conditions where the solute is completely rejected by the 
advancing ice front, the conventional diffusion equation is invalid and suitable transport expressions can 
only be obtained by an appropriate variable transformation from the laboratory frame of reference where the 
volume of the liquid region varies with time to a “solute-fixed” frame of reference where the volume of the 
liquid region remains constant (Levin et al. [34]). Such an analysis results in a nonlinear parabolic partial 
differential diffusion equation in the laboratory frame with a spatially and time varying effective convactive 
velocity term in addition to the usual time and spatial derivative terms. The analysis is valid at both short and 
long times and also for both ideal, dilute and non-ideal, non-dilute solutions. Additional approximations are 
made only to the extent that the liquid-solid interface is assumed to remain planar and that the system is 
assumed to remain in thermal equilibrium during the freezing process. Generalized results are obtained for 
initially ideal, dilute aqueous solutions cooled at various rates on one boundary by standard numerical 
methods. These results indicate that non-uniform concentration profiles can exist within the liquid region of 
systems during freezing and that the variation with time/temperature of the volumes of the liquid and solid 
regions is significantly affected by the non-uniform distribution of solutes. Our results also indicate that 
under certain circumstances (e.g. fast cooling rates) that the solidification process may be limited by mass 
transfer considerations, that is, by the ability of the solutes to diffuse away from the interface, rather than 
&ly by the heat-transfer considerations of whether or not the sensible and latent heats can be removed. 

NOMENCLATURE 

area ; 
cooling/warming rate ; 
molar concentration; 
diffusion coefficient ; 
apparent activation energy; 
thermal conductivity; 
latent heat of fusion ; 
length ; 
gas constant ; 
length ; 
temperature; 
time; 
volume ; 
velocity; 
apparent molar volume ; 
mole fraction ; 
position. 

Superscript 
.% solute-fixed frame of reference; 

V, volume-fixed frame of reference; 
non-dimensional. 

Subscript 

EQ, equilibrium ; 
EUT, eutectic; 

J freezing ; 

k, 
initial ; 
liquid ; 

LSI, liquid-solid interface; 

; 
melting; 
solid ; 

s, solute or solute-fixed frame of reference ; 
W, water ; 

Y* position ; 
;/-, final. 

Greek symbols 

Y, activity coefficient ; INTRODUCTION 

% viscosity ; THE SOL~DIHCATION and melting of common sub- 

v, number of species per molecule ; stances such, as water and ice, the casting and zone- 

PT density ; refining of metals, the production of frozen foods, and 

47 volume fraction. the projected use of latent heat-of-fusion energy stor- 
age devices are some typical examples of the multi- 
tude ofengineering situations involving heat and mass 

* Present Address: Biomedical Engineering and Instru- transfer in systems experiencing a phase transfor- 

mentation Branch, National Institutes of Health, Bethesda, mation. The essential and common features of these 
MD 20205, U.S.A. systems is that an interface exists which separates two 
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regions possessing greatly different thermodynamic, 
chemical and physical properties and that the position 
ofthe interface is neither fixed in space nor is its motion 
known a priori. Analyses of these phenomena therefore 
usually involve the simultaneous solution of heat- and 

mass-transfer equations subject to boundaries whose 
positions vary with time. Accordingly, many references 

to moving boundary problems exist in the literature 

[l&5]. 
As has recently been pointed out by Sparrow et al. 

[6], the standard model for freezing, and with approp- 
riate changes of wording for thawing, envisions a liquid 

which is initially at a uniform temperature equal to or 
greater than its fusion temperature. Then, at a specified 
instant of time, a cooling process is initiated at the 

external surface of the system which causes freezing to 
begin once the surface temperature is below the fusion 

point. The freezing front then propagates into the 
liquid with the liquid-solid interface at the fusion 
temperature. The “sensible heat” of the solid and the 
“latent heat” released by the freezing process are 

transported through the frozen layer by conduction 
and rejected to the environment. If the remaining 
portion of the liquid is above the fusion temperature, 

then the “sensible heat” of the liquid will also be 
transported to the interface by conduction and thence 
to the solid and the environment. Depending upon the 

exact circumstances, heat and mass may also be 
transported by convection within the liquid region. 

If the liquid is a multicomponent solution rather 

than a pure substance, then the above scenario must be 

modified to include the effects associated with alter- 
ations in the fusion temperature and the partitioning of 
the solutes between the solid and the liquid regions. 
For systems where the slopes of the solidus and 

liquidus curves are negative, the presence of solutes 
lowers the equilibrium freezing point of the solution 
and the equilibrium distribution coefficient takes a value 

of from zero, corresponding to the complete rejection of 

the solutes by the solid phase, to one, corresponding to 
the complete incorporation of the solutes into the solid 

phase. If the equilibrium distribution coefficient is less 
than unity, then some solute will be rejected by the 
advancing liquid-solid interface causing further 

lowering of the freezing point. The rejected, unin- 
corporated solute will form a solute rich layer in the 
liquid region immediately adjacent to the interface due 
to its relative inability to diffuse into the interior 

portions of the liquid region. This phenomenon is 
termed “concentration polarization” and sometimes 
gives rise to interface instabilities due to the “con- 
stitutional supercooling” of the remaining portions of 
the liquid region of the system (see Appendix). 

* It should be noted that some investigators of multicom- 
ponent solidification phenomena either consciously model 
their finite systems as being semi-infinite in extent [24,25] or 
give the impression that they are modeling closed systems of 
finite extent by defining a fixed reference volume [26]. 

In multicomponent solutions, continued growth of 
the solid phase will therefore depend not only upon the 
ability to remove the latent heat of fusion and the 
sensible heats of the liquid and solid regions, as is the 

case for a pure substance when no solutes are present, 
but also upon the ability of the solutes in the liquid 

phase to diffuse away from the interface, thereby 

permitting the solvent to gain access to the solid phase. 
This is especially true for aqueous solutions where the 
solutes are usually completely rejected by the ice and 

where the ratio of the thermal diffusivity of the ice to 

the thermal diffusivity of the remaining liquid is 

approximately 10 and the ratio of the thermal diffu- 
sivity to the mass diffusivity in the liquid is approx- 

imately 100. Hence, under certain circumstances, the 

solidification process for multicomponent solutions 

may be rate-limited by mass-transfer considerations, 

that is, by the ability of the solutes to diffuse away from 
the interface and for the solvent to diffuse towards the 

interface, rather than solely by the heat-transfer con- 
siderations of whether or not the latent and sensible 

heats can be removed. 

Because of this coupling of heat- and mass-transfer 

considerations, it is necessary in solving such problems 

to determine the spatial and time dependence of the 
temperature and concentration fields and the manner 
and rate at which the interface will move. It is therefore 

not surprising to find that most investigators have 
limited themselves to analyses of the freezing and 

thawing of pure substances where it is only necessary 
to solve for the temperature profiles and the interface 
position and not for the solute concentration profiles. 

Even so, only a few analytical solutions exist, with the 
most notable being those of Neumann (see [7]) and 

Stefan (see [8]) who considered the freezing and 
melting of pure substances initially as the fusion 

temperature. For other problems, however, either 
numerical (for review, see [9]), or approximate analyti- 

cal (for review, see [lo]) methods have had to be 
employed. Specifically, for the more complicated case 

of the solidification of multicomponent solutions, a 

number of different approaches have been taken ; (1) 
well-mixed liquid region approximation [ 11 191; (2) 

constant interface velocity approximation [2OG24] ; 
and (3) fully coupled heat and mass-transfer analysis 
[25- 281. 

However, despite these numerous studies, the only 

general finite domain analyses which are valid over the 
entire domain of time are those for pure substances 
and well-mixed liquid region multicomponent so- 

lutions [lo, 14, 17, 30-321. Investigators* of the 
fully coupled solidification problem for multicom- 
ponent systems have limited themselves to a discussion 
of the transients occurring at relatively short times 
where the long time effects of the finiteness of their 
systems can be neglected [28]. 

The purpose of this study is therefore to present a 
generalized analysis of the unidirectional freezing of 
finite domain aqueous solutions under conditions 
where the solute is completely rejected by the advanc- 
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ing ice front. The analysis is valid at both short and 
long times and also for both ideal, dilute and nonideal, 
non-dilute solutions. Approximations are made only 
to the extent that the system remains in the thermal 
equilibrium with its environment during the freezing 
process; and that the liquid--solid interface remains 
planar in spite of the fact that the solution in front of 
the advancing ice front might be “constitutionally 
supercooled” (see Appendix). Generalized results are 
obtained by standard numerical methods for initially, 
dilute aqueous solutions of uniform composition being 
cooled at various rates on one boundary while the 
temperature of the other boundary is held constant. 

General thermodynamic considerations 
Although most aqueous solutions common to in- 

dustrial and biological processes are multicomponent 
and electrolytic, the studies of Levin et al. [33-361 
have shown that at subzero temperatures, the behavior 
of multicomponent electrolytic solutions mimic the 
behavior of pseudobinary solutions consisting of a 
single solvent, IV (water), and a single solute, s. 
Consequently, as a typical example, let us consider the 
case of initially dilute electrolyte (NaCl, KCI, etc.) and 
non-electrolyte (glycerol, ethylene glycol, etc.) so- 
lutions which upon freezing form a pure ice solid from 
which the solute is completely rejected. Unlike the case 
for pure water, these types of solutions do not possess a 
single unique equilibrium freezing (melting) tempera- 
ture, I;, but a loci of equilibrium freezing (melting) 
temperatures which depend upon the instantaneous 
composition of the solutions, Mathematically, this 
concentration-temperature relationship is given by 
the following expression [37] : 

where c&Q is the solute concentration, v is the number 
of species per dissociated solute molecule, L, is the 
molar latent heat of fusion for pure water, T/, is the 
equilibrium freezing (melting) temperature of pure 
water at 1 atm (273.15 K), and r”, is the partial molar 
volume of water. Using typical values of L, -y 
6000 J/mol, V, = 18 cm3/mol and R = 8.314 J/mol K 
[38], this expression for the “equilibrium” 
concentration-temperature relationship can be re- 
written as : 

- (TI - TsW) mol/l 
C&T/) = ---, 1.86 v K 

(2) 

Focusing our attention upon the cooling of a finite 
volume of solution having an initial uniform com- 
position cs,(c.,, < cSEUT) and at an initial uniform 
temperature Tj above its equilibrium freezing tem- 
perature T (c ), then the system will remain entirely 
liquid unto the temperature 7’, is reached. If we then *i; .‘* 
assume that ice nucleates, the freezing process will 
begin and solute will be rejected by the advancing ice 

front. Now as long as the solid phase consists of pure 
ice, the number of moles of solute N, in the liquid 
region of the system will remain constant for all time. 
Consequently, under equilibrium conditions and at 
temperatures T > T,,, 

N, = c,,VL = constant 

or, from equation (2), 

(3) 

VLV,) -- =: cs Tf-T, =I 
Vi EQ ‘GEQ(T/) T, - Tfw 

(4) 

where VL(Tf)/ EQ is the “equilibrium” liquid region 
volume at the liquid-solid interface temperature T, 
and Vi is the initial liquid volume of the system. The 
“equilibrium” volume of the remaining liquid portion 
of a finite domain system in which the solute is 
completely rejected by the advancing liquid-solid 
interface is thus inversely proportional to the equilib- 
rium solution composition and/or the equilibrium 
liquid~solid interface tem~rature. Continued lower- 
ing of the temperature will result in the progressive 
growth of the ice phase { V,y=(p,,/p,) (Vi - V,j until 
the eutectic temperature is reached at which time the 
remaining liquid will begin to solidify at a uniform 

Transport expressions 
The expression given above relating the total liquid 

volume to the liquid region composition and/or 
liquid-solid interface temperature (4) is valid only for 
the equilibrium situation where the liquid region 
composition is uniform, that is, in the absence of 
concentration gradients. However, as was also men- 
tioned above, nonuniform concentration profiles are 
expected to exist within multicomponent systems dur- 
ing solidification. Consequently, for multicomponent 
solutions which change in volume during solidi~cation 
due to the removal of solvent but which remain fixed 
with respect to the initial amount of solute 

N, = c,~~V, = r 
J 

c,(r, r) dr = constant (5) 
VW 

where the solute concentration c, is now a function of 
position and time. Mass and heat transport ex- 
pressions are therefore needed to describe the 
concentration-temperature-time behavior of such 
systems. Now Levin et al. [34,35] have shown that the 
conventional diffusion equation is invalid under these 
conditions and that suitable transport expressions can 
only be obtained by an appropriate variable transfor- 
mation from the laboratory frame of reference where 
the volume of the liquid region of the system varies 
with time to the solute-fixed frame of reference where 
the volume of the liquid region of the system remains 
constant. 

Consequently, let us define a modified scale of 
length, yP such that equal increments of y, contain 
equal increments of unit basic volume of solute per 
unit area: 

dy, = &dy (6) 
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where d,(y, t) is the volume fraction of solute in the 
laboratory-fixed reference frame. In the solute-fixed 
reference frame, the water and solute concentrations 
must be expressed, respectively, as the amount of w and 
s per unit basic volume of solute: 

1 
c; = 5, c: = 5 = - = constant 

4, 4, c, 
(7) 

where c”, and ci are, respectively, the solvent and solute 
concentrations in the solute-fixed frame of reference, 
c, and c, are, respectively, the solvent and solute 
concentrations in the laboratory-fixed frame of re- 
ference, and V, and & are, respectively, the apparent 
molar volumes of the solvent and the solute (assumed 
constant). Since by definition 

4, = &c,, 4, = v,c, (8) 

where 4, is the water fraction in the laboratory frame 
and 

Av + 4s = 1 (9) 

from equations (7)-(9), it can be shown that 

o,dc, + v,dc, = 0 (10) 

K = l/4, - 1 (11) 

and 

dcs, = $dc,. (12) 
s 

The continuity equations in the solute-fixed frame 
for the liquid region of the system therefore take the 
form [34] 

ac;,O 
at 

and 

(134 

where J”, is the molar flux of solvent in the solute-fixed 
frame. Now Crank [9] has shown that 

J;=‘J, 
4, 

(14) 

where J, is the flux of solvent in the laboratory fixed 
frame 

J,= -Dv$ 

and D’(c,, T) is the effective diffusivity in the labo- 
ratory fixed frame [9, 341 

such that the term (1 + I? In yda In xs) (q,/q) 
represents the effects of solution non-ideality and 
viscosity and the term D,,(T) represents the effect of 
temperature on the overall diffusivity 

D,,(T) = D:exp[ - g(i-- tim)l (17) 

where T, is the initial equilibrium freezing (melting) 
temperature T, and 0: is the value of the volumetric 
diffusivity for an ideal, dilute solution at temperature 

Consequently on the basis of the above relation- 
ships, equations (6) (12) (14) and (15), the continuity 
equation for the solvent, equation (13b), can be re- 
written as 

or, employing equations (7)-(9) as 

2C a s=- 
St dy c J p3 +“,3 

c’y ) dy 
(19) 

where 

DV dc, 
%= --- c, dY y 

(20) 

is the effective convective velocity in the laboratory 
frame and 0 < y < I(t) such that 

I’m dt (21) 

is the size of the system at any time t, li is the initial size 
of the system and I),,,~, is the effective convective 
velocity at the liquid-solid interface, y = l(t), or more 
appropriately, the thermodynamically induced solvent 
volume flux out of the liquid region and into the solid 
region. 

The initial and boundary conditions corresponding 
to this situation are 

(l)Att=O, c,=c~~ forO<yIli 

(2) For t > 0, 

(22) 

(a) $=O aty=O (23a) 

(b) C, = c~~:~(T,,~,) at Y=@) (23b) 

where csEQ(TLSI) is the “equilibrium” solute con- 
centration at the liquid-solid interface temperature, 

T,_s, [see (2) and (27)l. 
Turning our attention now to the analogous heat 

transfer problem, for aqueous solutions the ratio of the 
thermal diffusivity of pure ice (1.26 x lo-* cm2/s) to 
the thermal diffusivity of water (1.33 x lo- 3 cm*/s) is 
approximately 10 (HCP, 1978). Furthermore, the ratio 
of the thermal diffusivity of water to the mass diffusivity 
of low molecular weight solutes in water ( - 1 x lo- ’ 
cm’/s at 0°C) is approximately 100. For compu- 
tational ease we will therefore limit ourselves to 
situations where our system can be assumed to 
remain in thermal equilibrium with its environment. 
Consequently, the temperature profiles within the 
liquid and solid regions are of the form 
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TL = To + VLSI - T,) (y/l) for 0 I y I 1 (24a) 

Ts = T~sr + (TE - TN) ( y - O/Y 

for Ilyl+:~ (24b) 

where 

T/(t) = E(li - l(t)) 

is the thickness of the solid region 
T, = Ti = constant (26a) 

is the system temperature at the boundary y = 0 

TE = Ti + Bt (26b) 

is the system temperature at the boundary y = i + .Y, 
B is the cooling/warming rate at the boundary y = I+ 
.Y, and 

ks 
- TE + + To - Pwbkw 

T .’ LSI = k. k 2+-L 
.Y I 

(27) 

is the system temperature at the liquid-solid interface 
such that ks and kL are, respectively, the thermal 
conductivities of the solid and liquid regions. This last 
expression for TLsr is based upon the fact that at the 
liquid-solid interface, the heat flux within the solid is 
equal to the heat flux within the liquid plus the amount 
of heat liberated as a result of the phase change 
occurring at the interface 

-/$!k 
ay LSI = 

-kLf!? 
aY LSI 

- PJ~ULSI. (28) 

Although the above relationships, equations 
(193_(27), form a complete set of mathematical ex- 
pressions, solution of this problem is facilitated by 
transforming these expressions from the laboratory- 
fixed frame of reference, where a boundary condition 
at a moving interface must be specified, equation (23b), 
back to the solute-fixed frame of reference where the 
position of the liquid-solid interface remains sta- 
tionary [34, 351. Using equations (8)-(12), it can be 
shown that the analogous mass-transfer equation in 
the solute-fixed frame of reference takes the form 

(29) 

where 

0 < yS S I, = f$ .$I & = constant (30) 

and D” is the effective diffusivity in the solute-fixed of 
reference 

Ds = & Dv. (31) 

The initial and boundary conditions in the solute-fixed 
frame of reference are : 

(1) 

(2) 

t = 0, c”, = c",~ for all ly,( I lS 

acs, 
t>O,--0 aty,=O 

dYS 

(32) 

(334 

where 

c”, = CEQ VW) at Y = 1, Wb) 

-- 1 (34) 

Non-dimensionalization 
These equations can be non-dimensionalized in 

following manner. If we define 

i = YJC, i = Yll, 

then since ls = d,,li, 

(35) 

(36) 

Furthermore if we define a non-dimensional time? and 
a nondimensional temperature ? such that 

i=$(t-t.) 
I 

and 

f = T-7-m 
Ti-T, 

(37) 

(38) 

then the governing mass-transfer equation, equation 
(29), takes the form 

for 

O<j,ll 

where from equations (17) and (38), Dr is the tempera- 
ture dependent portion of the mass diffusivity 

such that E(T) represents the apparent activation 
energy for the diffusion process and the effects of 
solution non-ideality and viscosity on the overall 
diffusion process have been neglected. The initial and 
boundary conditions take the form 

(1) t^< 0 and ?>O, (41) 

& = flWi for Olj,ll 

(2) t^>O and f<O, (42a) 

(a) at j, = 0 (centerline), 

ati o 
-= 

ak o 

(b) at jS = 1 (liquid-solid interface), 

-l WW 

where 

(43) 
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is the non-dimensional equilibrium freezing-melting 

temperature of pure water. The temperature of the 
system is given by 

where 

forkjd+ ‘/ Wb) 

and 

f0 = 1, f, = 6; (45) 

k.s h. 
- T, + 7 To - 

AA+ 

f 
J 

LSI = 

(Ti - T,) oil t:Lsr (46) 

5 + kl. 
i I 

such that 

is the non-dimensional cooling/warming rate and 

- If/D:, 
t,=-. 

B 
(48) 

Finally, the time/temperature variation in the volumes 

of the liquid and solid regions are given by 

I = P,> = l/,/Vi, ” = % = (P,.IPs) .(I - P,,) (49) 

or 
I’,,= 1 + &,s, di (50) 

where the non-dimensional interface velocity is given 

by 

VILSI = (51) 

The governing non-dimensional parameter for the 

present situation is the rate i which represents the 
ratio* of the externally induced volumetric time rate of 
change in the equilibrium solute concentration 

* From equations (46), (26b), (4) and (43), 

H dr’dt 

-(Al,) Tts dcs,/dt 
A(D;!I,) c,, 

(52) 

Furthermore, since for most aqueous solutions the diffusion 
coefficient is of the order of 1 x lo-’ cm”s at Ti = 20°C. on 
the basis of equations (17) and (53) D:-0.5 x toe5 cm*/s at 
T, = - 1’C. Hence, 

ri = /:R(l x 104)!cmZ C/s. 

Consequently. if 8 = - I, then R = - lo-“ ‘C/s for I, = 1 cm 

‘,(.41i)B/(Ti - T,) = - (Al,)?, dc,, /dt) to the rate of 
diffusion of the solute within the liquid region 
(A(D;/li)c,,). If Ii1 << 1, no nonuniform concentration 

profiles should develop within the liquid region of the 
system during the freezing process. In this limit there is 

little, if any, solute polarization because the solute can 
diffuse away from the advancing ice front almost as fast 

as the water which is freezing can convectively deposit 
it at the liquiddsolid interface. Consequently, the 

solidification process will not be rate limited by mass- 
transfer considerations. On the other hand, if 16 1 >> 1, 
highly nonuniform concentration profiles should de- 

velop within the liquid region of the system during the 
freezing process. In this limit, a significant amount of 

solute polarization should occur because the ice front 

is attempting to propagate faster than the “filtered” 
solute can diffuse away from the interface and than the 

water to be frozen can diffuse towards the interface. 

The solidification process in this instance will be rate- 
limited by mass-transfer considerations. 

METHODS 

Model applicability 
The model presented is generally applicable to any 

aqueous solution satisfying the conditions stated. 

However, in order to solve our set of equations, (39) 
(41))(43) some assumptions need to be made regard- 

ing the initial composition of the solution, the physical 
properties of the solute and the solvent, and the 

temperature range over which the freezing process is 

occurring. Consequently, as a demonstration of the 
applicability of the model, we considered the case of an 
hypothetical ideal aqueous solution having an initial 
solute concentration of 0.278 mol/l cooled to - 20°C 

at various rates. To account for the variation with 

temperature of the apparent activation energy of the 

mass diffusivity, equation (40), we have employed the 
following expression : 

E = 4.186exp 
- 1.45 x 10-2 T 

K 
+ 5.69 m& (53) 

1 

This expression results from a “least square fit” 
analysis over the temperature range of 0 to -40°C of 
the available data for the self-diffusion of pure water 
[39]. The apparent activation energy governing the 
diffusion process therefore increases during thecooling 

process (E _, c - 24 kJ/mol K pis ti cis E_zo c c 

32 kJ/mol K). These and other parameters are sum- 
marized in Table 1. 

Solution technique 
Although the set of mass and heat-transfer ex- 

pressions presented above to describe the redistri- 
bution of solute within an aqueous solution of finite 
extent during freezing can be written in the solute- 
fixed reference frame to avoid the complications 
imposed by analyzing a boundary condition at the 
moving liquid-solid interface, equation (23b), the 
strong concentration and temperature dependence of 
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Table 1. Physical parameters 

I449 

Initial concentration 

Solute apparent molar volume 

Chemical species per solute 
molecule 

Initial volume fraction 

Water apparent molar volume 

Ice/water density ratio 

Liquid region thermal 
conductivity 

Solid&quid thermal 
conductivity ratio 

Latent heat of fusion 

Initial temperature 

Equilibrium freezing?’ 
melting temperature 
of pure water 

Equilibrium freezing/ 
melting temperature 

Mass diffusivity at T,,, 

Mass diffusivity activation energy 

k,ik,. 

L 6.0 kJhnol 

‘J’i 293.15 K (20°C) 

Trw 273.15 K (0°C) 

Tm 

the mass diffusivity in the solute-fixed frame, equations 
(31) and (40) necessitates that the transport ex- 
pressions, equations (3!?), (41)--(42), (44)-(463, be sol- 
ved numerically. Consequently, an implicit method of 
differences using the Thomas tridiagonaliition meth- 
od [40] was employed to solve the governing non- 
linear parabolic partial differentiat transport equation. 
Typically, 21 nodal points of unequal spacing (8 x 0.1 
+ 8 x 0.02 + 4 x 0.01) with the finest mesh located closest 
to the liquid-solid interface and the coarsest mesh 
located near the centerline together with a time step 
which was small enough to yield values for the stability 
parameter At/(Aj,i”)’ of between 1 and 10 was used. 
Doubling of the number of mesh points and/or a 
decrease in the size of the time step by an order of 
magnitude yielded results which were not statistically 
different from those obtained under normal con- 
ditions. The principle usually adopted for non-linear 
parabolic equations of using a single time step 
predictor-corrector iterative scheme to evaluate un- 
known parameters was also employed in the present 
study. The error tolerance was typically I x 10m4. 
Finally, on the basis ofequation (5) which describes the 
conservation of solutes within the liquid region of the 
system, we estimate the “error” of the numerical 
solution to be less than +O.l%. 

RESULTS AND DISCUSSION 

For the case fi = -5, the spatial variation at 
various times during the freezing process of the 

0.278 mol/l 

36.0 cm3/mol 

2.0 

0.01 

99.0 

18.0 cm3m01 

0.917 

5.6 mW/cm K 

4.0 

272.11 K (-1°C) 

0.5 x 10-3 cm2:s 
1.45 x 1o-2 T 

+ 5.69 
K 

kJhno1 K 

temperature in the liquid and the solid regions and of 
the solute volume fraction in the liquid region are 
shown in Fig. 1. The variation with time of the 
temperature at the boundary j = I+ .+ (?e), at the 
liquid-solid interface 3 = r(?‘LsI), and at the boundary 
j = 0 (PO), and of the solute volume fraction at the 
liquid-solid interface j = i($ ) and at the boundary i 
= 0 (#,,) are shown in Fig. 2.‘% can be seen, the solute 
volume fraction at the boundary $ = 0, $,,, lags 
behind the solute volume fraction at the liquid-solute 
interface, Cp,,,, due to the polarization ph~omenon. 
Initially, the solute volume fraction at the liquid-solid 
interface will increase with time (see Fig. 2) as a result 
of the fact that the interface temperature initially 
decreases with time and of the assumption of local 
the~~herni~l equilib~um at the interface. The 
solute volume fraction at the boundary j = 0, 
however, initially does not change as ice first forms at 
j= 1’ because all of th e water initially being frozen is 
coming from the region of the system near the liquid- 
solid interface. Only after a finite period of time (for the 
case B = - 5, i 2 0.02 and ?, 6 -0.2) will the effects 
of the solidification process begin to manifest them- 
selves at the inner regions of the system due to the 
diffusion of solute (water) away from (towards) the 
liquid-solid interface. At long times though, the 
solute volume fraction in the interior portions of the 
liquid region will approach the solute volume fraction 
of the liquid-solid interface due to the fact that at 
temperatures between T,, (or T,) and TEuT, the 
“equilibrium” state of an aqueous solution of finite 
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FIG. 1. The spatial variation of the temperature (a) and the solute volume fraction (b) for a cooling rate of 
& = -5 at various times. 

extent is a partially frozen system with the remaining 
liquid having a uniform equilibrium concentration 
corresponding to the interface temperature (see Fig. 2). 
One additional point should be noted about the spatial 
and time dependence of the temperature and solute 
volume fraction profiles of the system. Namely, that at 
any given spatial position, the temperature and solute 
volume fraction might undershoot [see Fig. 2(a)] or 
overshoot [see Fig. 2(b)] their final equilibrium values. 
This is a direct result of the fact that non-uniform 
concentration profiles exist within the liquid region of 
the system for cooling rates 1 g I> 1 and that the spatial 
and time dependence of the temperature of the system 
is directly related to the magnitude of the latent heat 
released by the solidification process at the 
liquid-solid interface which in turn is a function of the 
solute concentration and the solute concentration 
gradient at the interface. 

Now a better indicator of the magnitude of the 
solute polarization that occurs within systems of finite 
extent during freezing is the ratio of the solute 
concentration at the liquid-solid interface, cSLs,, to the 
solute concentration at the boundary j = 0, cS,,. This 
ratio is plotted as a function of time, - %, for several 
different non-dimensional cooling rates fi in Fig. 3. AS 
can be seen, in general, the ratio cSL,Ic,, first increases 
with time from its initial value of unity before decreas- 
ing back towards unity. The initial increase in the 

ratio c ,/cs, is due to the fact the the liquid--solid 
interfaig solute concentration c increases with de- 
creasing temperature because %‘the assumption of 
local thermod~a~c equilibrium and constant cool- 
ing rate while the solute concentration c,, at y* = 0 
initially is not affected by the freezing process and 
remains essentially equal to its initial value cS,. As time 
progresses, however, and the rejected solute IS able to 
diffuse away from the liquid-solid interface and into 
the interior portions of the liquid region, the y^ = 0 
solute concentration c,, begins to rise, causing the ratio 
cS /cSO to decrease with time. Finally, as equilib~um is 
a&ieved as t^ -+ E), the ratio c s /es0 approaches an 
equilibrium value of unity. In ad&ion to varying with 
time/temperature during freezing, the magnitude of 
the ratio cJc_ is also a stro_ng function of the cooling 
rate B. For example, when B = -0.1, the maximum 
value of the ratio cJc,, is only 1.1 (at Bt’ = -0.03) 
.hile when 6 = - 10.0, the maximum value of the 

ratio c ,J&, is 5.6 (at & = -0.52). The reason for this 
strong’~e~nden~e of the magnitude of the ratio 
cJc,,, on the cooling rate is that when 1 E\ << 1 almost 
no solute polarization occurs because the rejected 
solute can diffuse away from the advancing ice front 
almost as fast as the water which is freezing can 
convectively deposit it at the liquid-solid interface. 
However, when 18 ( 2 1, a significant amount of solute 
polarization occurs because the “filtered” solute can- 
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FIG. 2. The variation with time of the temperature_(a) and the 
solute volume fraction (b) for a cooling rate of B = -5 at 
various spatial positions. The dashed curves represent the 
conditions in the presence of a uniform solute concentration 

profile. 

not initially diffuse away from the interface as fast as 
the ice front is attempting to propagate. 

The effect that the solute polarization phenomenon 
has on the overall freezing process can be seen more 
easily in Fig. 4 where the relative volume of the liquid 
region of the system 8, at a given time, -fit: is plotted 
for several different non-dimensional cooling rates 8. 
Since essentially no nonuniform concentration profiles 
develop for II? 1 c 1, the liquid region volumes for 
systems of finite extent will essentially be equal to 
(actually, slightly greater than) the “equilibrium” 
liquid volume of the system at any temperature TLSI. 
On the other hand, for 161 >> 1 highly non-uniform 
concentration profiles develop within the liquid region 
of a system [see Fig. l(b)] such that the solute 
concentration at the liquid-solid interface greatly 
exceeds the solute concentration within the interior 
portions of the system (see Fig. 3). More unfrozen 
water as compared to the equilibrium case will there- 
fore be present at any temperature below the initial 
freezing point for fast cooling rates. Furthermore, since 
the extent of solute polarization increases with faster 
cooling rates, the amount of unfrozen water (ice) 
present at any temperature will increase (decrease) as 
the cooling rate is increased. However, as the freezing 
process continues and the solute rejected by the 
advancing ice front has time to diffuse into the interior 
portions of the liquid region which is continually 
diminishing in volume, the volume of the liquid region 
will approach its final equilibrium value as t + cz for 
any fixed final temperature pLsI between 0 and FE,,. 

Finally, the variation with time, - 3: of the rate of 
growth of ice can be seen in Fig. 5 where the non- 
dimensional interface velocity I&~, is plotted for several 
different non-dimensional cooling rates I% Several 

TIME, 8; 

FK;. 3. The variation with time of the ratio of the solule concentration at the liquid-solid interface, j = [ to 
the solute concentration at j = 0 for various cooling rates. 
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FK;. 5. The variation with time of the liquid-solid interface velocity for various cooling rates. 
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FK,. 6. The variation with time of the stability criterion for various cooling rates. 



The freezing of finite domain aqueous solutions : solute redistribution 1453 

facts should be noted about the time dependence of 
the liquid-solid interface velocity. First, in general the 
faster the cooling rate, the larger will be the interface 
speed at any given time. This should be expected since 
less time is available between any two temperatures at 
the faster cooling rates for finite domain systems to 
attempt to re-establish thermochemical equilibrium. 
Secondly, because the system is beginning to freeze at 
its initial equiIibrium freezing temperature T, (or T,) 
rather than supercooling, the initial ice growth rate at 
i=(l is zero rather than infinite. Likewise, as time 
progresses the interface accelerates, causing the ice 
growth rate to increase, rather than decelerate as it 
would for the case of a sudden change in surface 
tem~rature. The continuing buildup of rejected sol- 
ute in the liquid region of the system adjacent to the 
interface and the relative inability of “fresh” water to 
diffuse towards the interface and freeze, however, 
eventually causes the ice front to decelerate resulting in 
some maximum value for the speed of the liquid-solid 
interface. Eventually, the speed of the liquid-solid 
interface will asymptotically approach zero as equilib- 
rium is achieved within the finite domain system as 
t-+7.. 

SUMMARY AND CONCLUSION 

A non-ideal, non-dilute pseudo-binary solution mod- 
el has been presented to describe the concentration 
polarization of solutes during the planar uni- 
directional freezing of finite domain aqueous solutions 
at both short and long times. Our results indicate that 
the diffusion of solutes within the liquid region of 
systems of finite extent where the solid phase consists 
of pure ice is not governed by the “ordinary” diffusion 
equation. This is a direct result of the facts that the sizes 
of the solid and the liquid regions vary with 
time-tem~rature and that the total volume of solute 
within the remaining liquid remains constant. Genera- 
lized results are obtained by standard numerical 
techniques for initially ideal, dilute aqueous solutions 
cooled at various rates on one boundary. These results 
indicate that non-uniform concentration profiles can 
exist within the liquid region of systems during freezing 
and that the votumes of the liquid and solid regions at 
any time/temperature are significantly affected by the 
extent of solute polarization. More specifically, our 
results indicate that for “fast” cooling rates, the 
solidification process may be rate-limited by mass- 
transfer considerations, that is, by the ability of the 
solutes to diffuse away from the interface, rather than 
solely by the heat-transfer considerations of whether 
or not the latent and sensible heats can be removed. 
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APPENDIX 

Throughout our current discussion of the solidification of 
aqueous solutions, one of our major assumptions has been 
that the moving liquid-solid interface remains planar during 
the entire freezing process. Unfortunately, stability of a 
moving planar ice front cannot always be guaranteed [41]. It 
is therefore appropriate for us to briefly discuss the region of 
validity of our current analysis of aqueous solution freezing. 

Now the stability of our planar liquid-solid interface can 
easily be determined by applying the Chalmers stability 
criterion [22], which for our purposes reduces to the 
following expression 

This expression states that if the magnitude of the tempera- 
ture gradient within the liquid region at the liquid-solid 
interface is greater than the magnitude of the gradient in the 
“equilibrium freezing” temperature at the interface, then a 
propagating planar ice front will be stable. If this condition is 
violated, then higher order dendritic configurations are more 
stable than a simple planar surface. Application of this 
criterion to our current analysis of the freezing of finite 
domain aqueous solutions (see Fig. 6) yields the results that 
the assumed planar interface will be_:table if EJI < 6.5 but 
might be unstable at some times - Bt > 0 if 1 Lg 1 > 6.5. Our 
present analysis should therefore be valid for non- 
dimensional cooling rates, 1 B 1, less than approximately five. 

LE GEL DES SOLUTIONS AQUEUSES EN VOLUME FIN1 : REDISTRIBUTION 
DU SOLUTE 

R&sum&On prCsente l’analyse du gel unidirectionel des solutions aqueuses de volume fini pendant le 
refroidissement i des tempbatures basses. Dans ces conditions, alors que le solutC est compl&ement rejete 
par le front de glace qui avance, l’equation classique de la diffusion n’est pas valable et des expressions 
convenables du transport peuvent itre obtenues seulement par une transformation de variable approprib 
entre le systkme de rtfkrence oti le volume de liquide varie en fonction du temps et le systbme de rkfkrence B 
‘solutt fixe’ od le volume de liquide reste constant (Levin et al., J. Heat Transfer 99,322,1977). Cette analyse 
conduit i une 6quation de diffusion aux d8riv6es partielles parabolique et non liniaire avec un terme de 
vitesse de convection variant dans l’espace et dans le temps, en plus des termes usuels de derivation par 
rapport au temps et $ l’espace. L’analyse est valable a la fois pour les temps courts et longs et aussi bien pour 
les solutions idlales, diluees et non id&ales ou concentr&s. Les rlsultats montrent que des profils de 
concentration non uniforme peuvent exister dans la phase liquide pendant le gel et que la variation en 
fonction du temps et de la temptrature du volume des r&ions liquide et solide est sensiblement affect& par la 
distribution non uniforme du solutb. Les rtsultats indiquent aussi que dans certaines circonstances (comme 
les grandes vitesses de refroidissement), le mbcanisme de solidification peut etre limit6 par le transfert 
massique, c’est-i-dire par la possibilitl pour le solutd de diffuser loin de l’interface, plut& que par le transfert 

de chaleur associe au dtplacement de chaleur sensible ou latente. 
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DAS GEFRIEREN VON WASSRIGEN LGSUNGEN IN BEGRENZTEN 
BEREICHEN : UMVERTEILUNG DES GELGSTEN STOFFES 

Zusammenfassung-Es wurde eine Untersuchung des eindimensionalen Gefriervorgangs von waBrigen 
Losungen in begrenzten Bereichen mit Warmeentzug bei Temperaturen unterhalb des Gefrierpunkts 
durchgefiihrt. Unter Bedingungen, bei denen der geldste StotT von der vordringenden Eisfront vollstandig 
verdrlngt wird, ist die herkommliche Diffusionsgleichung ungtihig. Passende Transportbeziehungen konnen 
nur durch eine Variablentransformation vom Laborbezugssystem, bei dem sich das Volumen des 
Fliissigkeitsgebiets mit der Zeit verandert, auf ein in Bezug auf den gel&ten Stoff fixiertes Bezugssystem, bei 
dem das Volumen des flussigen Gebiets konstant bleibt, erhalten werden. Dieses Vorgehen fiihrt auf eine 
nichtlineare parabolische partielle Diffusionsdifferentialgleichung fur das Laborsystem mit einem rlumlich 
und zeitlich veranderlichen effektiven Konvektionsgeschwindigkeitsglied zusltzlich zu den iiblichen 
Ableitungen nach den Orts- und Zeitkoordinaten. Die Beziehungen sind fur ideale, verdilnnte und 
nichtideale nichtverdiinnte Losungen fiir kurze und lange Zeiten gilltig. Zusltzliche Vereinfachungen 
werden nur insofern eingefilhrt, als die Fest/Fliissig-Grenzflache als eben und die Temperatur des gesamten 
Systems wahrend des Gefriervorgangs als Grtlich gleichformig betrachtet wird. Allgemeingiiltige Ergebnisse 
wurden fiir anfanglich ideal verdunnte wlgrige Losungen bei verschiedenen Abktlhlungsgeschwindigkeiten 
mit numerischen Standardmethoden berechnet. Diese Ergebnisse zeigen, daD ungleichformige Konzentra- 
tionsverlaufe im Fliissigkeitsgebiet von Systemen wahrend des Erstarrens auftreten konnen und dal3 die 
Veranderung der Volumina des fliissigen und des festen Bereichs signifikant mit Temperatur und Zeit von 
der ungleichformigen Verteilung des gel&ten Stoffes beeinfluBt wird. 

Unsere Ergebnisse weisen ebenfalls darauf hin, da13 unter bestimmten Umstanden (insbesondere bei hohen 
Abkiihlungsgeschwindigkeiten) der Erstarrungsvorgang durch den Stofftransport begrenzt werden kann, 
d.h. mehr durch die Moglichkeit des gel&ten Stoffes, von der Grenzflache wegzudiffundieren, als allein durch 
die Moglichkeiten des Warmetransports, d.h. ob die fiihlbare und latente Warme abgefiihrt werden kann 

oder nicht. 

3AMEP3AHME BOAHbIX PACTBOPOB KOHEqHOf-0 06’bEMA. HEPEPACflPEAEJIEHME 
PACTBOPEHHOI0 BEIIIECTBA 

AHHOTWJM- I-lpeAcTaeneH aHanW3 npouecca 3aMep3aHsiK BOAHbIX paCTBOpOB KOHe'IHOrO 06aehla 

npH 0Xna;KAeHHH paCTBOpa RO TeMnepaTypbl HHxe HyflH. npH UOnHOM OTTOp*eH&lH paCTBOpeHHOr0 

BeIuecTBa nponseratomriMcn &OHT~M nbna Henb3R kicnonb3oBaTb 06bI'IHO npur4eHneMoe ypa*HeHse 

Ak4l$y3HH. COOTBeTCTByMIUHe ypaBHeHH5, nepeHOCa MOmHO BbIBeCTW TOnbKO nyTCM npeO6pa3OBaHHR 

nepeMeHHbIX H3 na60paTOpHOti CWCTeMbI OTC'IeTa. B KOTOpOir UpOHCXOAHT H3MeHCHHe BO BpeMeHk, 

o6aeMa WiAKOfi $a3bI. K CWCTeMe OTCYeTa, @iKCHpOBaHHOi B paCTBOpeHHOM BelUeCTBe. B KOTOpOit 

06ae~c %fAKOfi~a308oCTaeTC51 BenH~HHOknOCTORHHOti(CM.neBHH w Ap., mypHan c(Tennonepenaqa)) 
T. 99. CTP. 322. 1977 r.). Takoe npeo6pa3osaese n03aonReT nonyrerb HenaHeRHoe napa6onwrecKoe 

ypaBHeHue AW$@y3HH B WCTHbIX IlpOH3BOAHbIX B na6OpaTOpHOi CWCTeMe OTCYeTa, KyAa, ,,OMHMO 

06bI'iHbIX IlpOCTpaHCTBeHHO-BpeMeHHbIX npOH3BOAHbIX. BXOAWT 'IneH C S+$eKTBBHOii KOHBeKTBBHOi? 

CKOpOCTbKIo. &i3MeHRKNUeiki B npOCTpaHCTBe W BpeMeHH. AHanw3 CtlpaBeAJlliB KaK Ann ManbIX, TaK U 

6onbmex BpeMeH.aTaKmeAn%l WAeanbHbIX. pa36aBneHHbIX.H HeHAeanbHbIX. Hepa36aBneHHbrX,paCTBO- 

poa. ,4ononIuiTenbHbIe ynpoIueHHn cBR3aHbI c npennonoxeHanM8. qT0 rpaHsua pasnena mWAKocTb- 

Teepnoe reno 0cTaeTcn nnocroii, a TeMnepaTypa Bceit cltcTeMbl-0A~opon~oA B npOCTpaHCTBe Ha 
UpOTSKeHBH BCerO npOUeCCa 3aMep3aH,,,,.06bI',HbIMW 'IHCneHHbIMH MeTOAaMH nOnyVeHb1 pe3ynbTaTbI 

AJIll nepBOHa'lanbH0 WAeanbHbIX. pa36aBneHHbIX BOAHbIX paCTBOpOB, OXJIaxAaeMblX C pa3nHYHOti 

CKOpOCTbtO.3TA~3ynbTaTbI llOKa3bIBaH)T,'lTO IlpH3aMep3aHHHB o6beMe WlAKOii~a3bI MOryT HMCTb 
MeCTO HeOAHOpOAHbIe llpo+iJUf KOHUeHTpaUHH W 'IT0 HeOAHOpOAHOe paCnpeAeneHkie paCTBOpeHHOr0 

BeLUeCTBa OKa3bIBaeT 6onbmoe BnWIHHe Ha 3aBHCHMOCTb TeMuepaTypbI OT BpeMeHH AnR 065eMOB 

*HAKOCTW W TBepAOrO BeLUeCTBa. KpoMe Tore rIOKaJaH0, YTO npw OnpeAejleHHbIx ycnoBsnx (~.e. 

BbIcoKoii CK~~OCTB 3ahiepsaHiin)npouecc 3aTeepneBaHsin MoxeT 3aTopMaxkiBaTbcn MacconepeHocoM. 

TOeCTbAU~~y3HeApaCTBO~HHOrOBelqeCTBaOTrpaHsUbIpa3Aena 6onee.reM WCTO TennOO6MeHHbIMH 

npoueccabw TaKsiwi.KaK H3MeHewie TennocoAepxaHsn Hnr( Bbtnenewie cKpbmoB TennoTbI. 


